Differential Gene Expression in Relation to the Clinical Characteristics of Human Brain Arteriovenous Malformations

نویسندگان

  • Yasushi TAKAGI
  • Tomohiro AOKI
  • Jun C. TAKAHASHI
  • Kazumichi YOSHIDA
  • Akira ISHII
  • Yoshiki ARAKAWA
  • Takayuki KIKUCHI
  • Takeshi FUNAKI
  • Susumu MIYAMOTO
چکیده

Arteriovenous malformations (AVMs) of the central nervous system are considered as congenital disorders. They are composed of abnormally developed dilated arteries and veins and are characterized microscopically by the absence of a capillary network. We previously reported DNA fragmentation and increased expression of apoptosis-related factors in AVM lesions. In this article, we used microarray analysis to examine differential gene expression in relation to clinical manifestations in 11 AVM samples from Japanese patients. We categorized the genes with altered expression into four groups: death-related, neuron-related, inflammation-related, and other. The death-related differentially expressed genes were MMP9, LIF, SOD2, BCL2A1, MMP12, and HSPA6. The neuron-related genes were NPY, S100A9, NeuroD2, S100Abeta, CAMK2A, SYNPR, CHRM2, and CAMKV. The inflammation-related genes were PTX3, IL8, IL6, CXCL10, GBP1, CHRM3, CXCL1, IL1R2, CCL18, and CCL13. In addition, we compared gene expression in those with or without clinical characteristics including deep drainer, embolization, and high-flow nidus. We identified a small number of genes. Using these microarray data we are able to generate and test new hypotheses to explore AVM pathophysiology. Microarray analysis is a useful technique to study clinical specimens from patients with brain vascular malformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells

Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...

متن کامل

P-11: Differential Expression of mRNA Aromatase in Ejaculated Spermatozoa from Infertile Men in Relation to either Asthenozoospermia or Teratozoospermia

Background Estrogens biosynthesis in ejaculated spermatozoa is an autonomous process that may influence sperm functions. The purpose of this study was to evaluate the relationship between the expression of aromatase, sperm quality and seminal neutral α–glucosidase marker in semen of Tunisian infertile men. MaterialsAndMethods Fifty seven men were investigated: they were composed of two groups: ...

متن کامل

Notch receptor expression in human brain arteriovenous malformations

The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well-understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations dev...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2014